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Figure 1: An example of feature matching between two images taken at different time periods.

Abstract

Matching images with each other using their unique features has
many applications. While there currently exists many robust image
feature matching systems, we propose that they are currently only
accurate when matching modern photos with each other. Historical
photos, traditionally taken on film, when converted to digital format
are not likely to successfully match with modern equivalents. Pho-
tos of famous landmarks from various dates were gathered to verify
this hypothesis. Images were matched using four standard feature
matching systems. These systems matched either image corners
or image blobs with each other. Match successes were recorded for
each image comparison, and analyzed in tables. The results showed
that the feature systems accurately matched modern photos with
each other. However, when matching historical photos to modern
photos, results were poor. A novel approach to feature matching
using image regions was proposed. The expectation was that using
regions instead of corners or blobs would result in higher accuracy
when matching. Initial results were mixed, and no concrete solution
was found.
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1 Problem Description and Domain

Image feature matching is an active research area for Computer Vi-
sion. The ability to match objects of interest across multiple im-
ages has many applications. There currently exists numerous tech-
niques suitable for this task, each with their own pros and cons.
The problem with modern techniques is they frequently rely on
the information embedded in digital images to perform their fea-
ture matching. This poses a problem for historical photos, which
have to be converted to digital format, usually through a scanning
process. This conversion lacks the information which would be in-
herent in images taken with a digital camera. Our theory is that
feature matching historical images with modern images will be sig-
nificantly less accurate than desired. A new technique needs to be
developed which accounts for the lack of digital information in the
historical photos.

2 Motivation

With the rise of interest in Augmented Reality technology, the need
for accurate historical to modern image matching is increasing. An
example application could be that a user would use a camera phone
on a famous landmark and the application would superimpose a
historical image of the same landmark on the screen [Whitehead
2013]. Another could be the user uses a camera phone on an old
photo of a famous landmark, and the application would match it
to modern photos of the same landmark. Applications like these
would be unusable if the matching was inaccurate.



3 Project Goals

The goals of this project are as follows: To demonstrate that mod-
ern feature matching techniques are inaccurate at matching histori-
cal to modern photos. This will be done by testing each technique
on 10 famous landmarks, and recording match successes and fail-
ures. These results are to be displayed in tables, which will demon-
strate each technique’s accuracies. As well, the goal is to propose a
method for more accurate matching.

4 Feature System Descriptions

Each feature system computes two components used for image
matching: keypoints, which are the locations of desired features,
and descriptors, which are collections of information on the pix-
els surrounding each keypoint. Descriptors are stored in a matrix,
where each row of the matrix is the descriptor for a particular key-
point. The following is a brief description of each of the feature
systems tested in this project. It will describe what they each con-
sider a desired feature, how these features are discovered, as well
as how the descriptors are gathered.

4.1 HARRIS System

The Harris feature system is a corner detector [Harris and Stephens
1988]. In this context, corner means a feature point with large inten-
sity changes in more than one direction [Roth 2012]. The intensity
change at a given pixel in a given direction vector can be computed
using the sum of differences squared of the pixel values in the pixel
of interest’s neighbourhood and the associated pixel shifted by the
vector. This sum can be expressed as the second moment matrix
[Bay et al. 2008]. This matrix’s determinant and trace can then be
used to determine the corner response of a given pixel [Harris and
Stephens 1988]. If the corner response is greater than a given value,
that pixel is determined to be a detected corner, and a keypoint is
stored.

The Harris descriptor for a keypoint is the pixel intensity values of
the pixels in its neighbourhood. For this project, a neighbourhood
was 7X7 in size, thus three pixels in every direction from the pixel.
The intensity values are stored in row-major order.

4.2 KLT System

The Kanade-Lucas-Tomasi feature system (KLT) is another corner
detector. Its feature extractor was originally described in a paper
by Kanade and Lucas, and later expanded into a technique called
”Good Features to Track” [Shi and Tomasi 1994]. It was originally
developed to track features in an animated movie, only keeping fea-
tures that are not too dissimilar between frames. The OpenCV im-
plementation of ”GoodFeaturesToTrack” was used in this project.
The features are computed using the same matrix as HARRIS, ex-
cept it uses the eigenvalues of the matrix instead of its determinant
and trace [Bouguet 2000].

The matrix and its eigenvalues are computed over every pixel in the
image. The minimum eigenvalue is retained for each pixel. Subse-
quently the maximum of these eigenvalues is retrieved. All pixels
that have a minimum eigenvalue larger than a percentage of the
maximum are then retained. From those pixels, only those whose
minimum eigenvalue is larger than any other pixel in its 3x3 neigh-
bourhood are kept. The retained pixels are further reduced by only
keeping pixels who are a given minimum distance from any other
retained pixel. These remaining pixels are the final keypoints. The
KLT descriptor is the same as the one used by HARRIS.

4.3 SIFT System

The Scale Invariant Feature Transform (SIFT) feature system was
originally developed as a means to discover image features that are
invariant to scale and rotation [Lowe 2004]. This is accomplished
using a cascaded approach, where computationally expensive op-
erations are executed only on regions that pass certain initial tests.
First, scale-space extrema are detected. This is accomplished by
using a Difference of Gaussian function to identify potential in-
terest points across all Gaussian scales and image locations. Local
extrema are detected by comparing each sample point to its 8 neigh-
bours in the current image and 9 neighbours in the Gaussian scales
above and below it. The sample point is selected only if it is larger
or smaller than all of these neighbours. Keypoints are then gen-
erated from the candidate locations and are computed as vectors,
storing their scale, orientation and location. The orientation of each
keypoint is based on the image’s local gradient directions. Key-
points are rejected if they have low contrast or are poorly localized
along an edge.

Transforming the image data by the scale, orientation and location
information stored in each keypoint provides invariance to these
parameters. Unlike HARRIS and KLT, SIFT descriptors are com-
puted using the gradient magnitude and orientation at each sam-
ple point in a region around the keypoint location. These samples
are then accumulated into orientation histograms, which are finally
stored in a vector, representing the descriptor.

4.4 SURF System

The Speeded Up Robust Features (SURF) feature system can be
classified as a blob detector [Mikolajczyk and Tuytelaars 2008]. It
is a scale invariant feature detector based on an approximation of
the Hessian-matrix. Rather than calculate the second order Gaus-
sian derivatives in the Hessian-matrix for each pixel location, they
are approximated in constant time using a pre-computed ”integral
image”. These integral images provide a way for the sum of pixel
intensities in a box area to be calculated in only 4 constant time
operations, regardless of the size of the area. The determinant of
this approximated matrix represents the blob response in the image
at a specific pixel location. These blob responses are calculated for
each location at multiple scales in constant time using the integral
images [Bay et al. 2008]. Keypoints are kept where this determi-
nant is maximum. Using multiple scales makes this feature system
scale invariant.

The descriptor for SURF is similar to the one used by SIFT, since
it focuses on the spatial distribution of gradient information. To
speed up descriptor computation, instead of using gradients, inte-
gral images are used to compute the responses in the x or y direction
at any scale. For each keypoint, multiple responses are computed
using the interest point as its center. The sum of these responses
represents an estimate of the dominant orientation of a pixel and
its neighbourhood. The descriptor is constructed using a square
region centered around the keypoint and oriented along the domi-
nant orientation. It consists of 64 values, representing the intensity
structure of each of the 4x4 sub-regions in the constructed square
region.

5 Data Set Description

The feature matching tests were evaluated on 10 famous landmarks.
Choosing famous landmarks made it likely to find on the internet
numerous images from a large range of time to test on. Each image
of the landmark would need to be from a similar point of view, oth-
erwise the matching would not work, regardless of the time span.
Each landmark had 10 images gathered from various dates. An



example of a historical photo and a modern photo can be seen in
Figure 2. The year the photo was taken was recorded. The images
were also cropped and resized if necessary, so that they were all
similar. All the images were gathered from Flickr or Google im-
ages. A summary of the landmarks used for testing is displayed
in Figure 3. Each landmark displays its name, the range of dates
of their respective photos, and 5 examples of the photos used for
testing, in ascending order by date taken.

Figure 2: Example of Historical (1858) and Modern (2006) photos
of the Egyptian Pyramids used for feature matching.

6 Tests on Data Set with Existing Feature
Systems

All the images were preloaded in greyscale mode. The landmarks
were tested against each of the 4 feature systems. For each sys-
tem, each image in the landmark was compared with all the other
images, plus itself. This resulted in 10 landmarks X 10 images X
10 images X 4 feature systems = 4000 comparisons. The keypoints
and descriptors for the images being compared were computed us-
ing the particular feature system. Figure 4 shows an example of
two images being compared using SURF, with their respective key-
points displayed. A naive matching of keypoints on the left to the
keypoints on the right would result in too many match lines, as
shown in Figure 5. To evaluate if a match was successful or not, a
significant number of the match lines had to be discarded, retaining
only matches deemed appropriate.

Figure 4: Two images of the Eiffel tower being compared; showing
their respective SURF keypoints

The first step of matching keypoints between two images was to use
the Fast Library for Approximate Nearest Neighbours (FLANN)
search algorithm. FLANN takes a data set and a desired precision
as input and executes what it determines to be the fastest approxi-
mate nearest neighbours algorithm to use, and returns the data that
matches best [Muja and Lowe 2009]. Figure 6 demonstrates that
FLANN greatly reduces the number of matches, making it easier

Figure 5: The SURF keypoints from the image on the left naively
matched with those on the right

to determine a success or failure test result. However, further re-
ductions were required to remove any remaining outliers. The final
stage of keypoint matching was to execute a disparity gradient fil-
ter. This filter would remove any matches that are inconsistent with
the others [Whitehead 2013]. Figure 7 shows that the outliers from
Figure 6 were removed.

Figure 6: Matching results using FLANN on two images with
SURF keypoints and descriptors

A test would be considered a success if a significant number of
the remaining keypoints were correctly matched. Conversely, a test
would be considered a failure if a significant number of the key-
points were incorrectly matched. Figure 7 demonstrates a success-
ful test result, while Figure 8 demonstrates a test that failed. These
results were stored as a comparison matrix in a comma separated
file. This was to make it simple to import into Excel. All the results
were compiled and imported into an Excel worksheet, and format-
ted to make analysis easier. The pseudocode of this testing process
is displayed in Figure 9.

7 Analysis of Feature Matching with Modern
to Historial Photos

The following are two tables summarizing the feature matcher ac-
curacies and hamming distances in each landmark, respectively.
The hamming distance between a row in one table and a row in
another table is the number of times the two rows differ in value.
For the hamming distances table, its final row is the sum of all the



Figure 7: Remaining matches after executing a disparity gradient
filter

Figure 8: A test on the Eiffel tower with SURF that failed

hamming distances for each table comparison for all the landmarks.
This provides an overall result of how the tables compare [White-
head 2013].

Figure 10 displays a summary of feature matcher accuracies across
all the landmarks. Additionally it displays the overall accuracy for
each feature matcher, calculated by the total number of successes
divided by the total number of tests. Less than 33% will display
as red, between 33% and 67% as yellow and above 67% as green.
The results demonstrate that SURF was overall the most accurate
feature matcher, with SIFT performing only slightly worse. KLT
was overall the most inaccurate feature matcher. Figure 11 dis-
plays a summary of all the hamming distances. The hamming dis-
tance between two feature matchers is the number of times the two
techniques had different results. The summary table has a row for
each landmark, where the final two rows provide a total for each
table comparison as well as the average. These hamming distances
are an informative way of comparing the different feature matchers
[Whitehead 2013]. The results show that HARRIS and KLT were
the most alike in all the landmark results, while HARRIS and SIFT
were the least alike of all the landmark results.

The results compiled from all the tables indicate that SIFT and
SURF overall outperformed HARRIS and KLT. Additionally, for
both SIFT and SURF, the majority of their success results were in
the bottom right hand corner of their respective tables. These suc-
cessful matches correspond to comparisons of modern photographs.
This signifies that SIFT and SURF are better at matching when
modern images are compared with each other. However, they are

Figure 9: Pseudocode of test script used to gather results

Figure 10: Summary of the feature matcher accuracies

not any better at matching historical photos than HARRIS and KLT,
which performed poorly.

A noticeable trend among all the feature systems is that their suc-
cess results tend to be closer towards the diagonal of their respective
tables. These results correspond to image comparisons where the
images do not have a significantly large time span. This means that
very old images matched with more recent images failed more fre-
quently than images that were only a few decades apart. This could
be due to changes in image technology, as well as the transition
from film to digital imagery.

8 A proposed improved approach

The proposed technique for improved matching is based off of the
Maximally Stable Extremal Regions (MSER) detector. Very briefly,
every extremal region is a connected component of the input image
thresholded to a specific value [Matas et al. 2002]. These regions
represent local minima or maxima of the input image. The set of all
MSERs are the extremal regions for each possible threshold value.
However, only regions that are maximally stable are kept.

MSER was chosen as a new technique because an abstract feature
all the landmarks have in common with their respective photos is
their recognizable regions. A feature point from a corner or blob
is subject to the technology used to take the photo, which poses a
problem for historical photos. In contrast, the way MSER detects
regions seemed ideal for this problem. If similar regions could be
detected between photos, it would prove to be more accurate than
using the techniques previously tested.



Figure 11: Summary of the feature matcher hamming distances

9 Evaluation of new approach

Initially, simple MSER comparisons were executed to determine if
accurate matching would be likely. The MSERs were generated for
each image, and images were visually compared with each other.
The goal was to check if regions would be reasonably similar, such
that automatic matching of regions could be done. Preliminary re-
sults were mixed. As shown in Figure 12, some landmarks had
many similar regions. This could be explained because the land-
marks themselves had many repeating shapes, such as windows.
Some landmarks, like the one in Figure 13, had relatively few sim-
ilar regions. This small number would be unhelpful for matching
images accurately. As well, some landmarks had virtually no dis-
cernibly similar regions. This can be observed in Figure 14.

Figure 12: MSER comparison of the Colosseum with a high num-
ber of similar regions

Figure 13: MSER comparison of Eiffel tower with a low number of
similar regions

It was surprising that there were not numerous similar regions
across all the landmarks. Each one had unique areas that could
have translated well to comparable regions. For example, Figure 15
shows that the two images that were compared in Figure 14 had a
very similar mountain regions.

It was determined that the low number of similar regions could be
due to noise in the images. Applying a large Gaussian blur to the

Figure 14: MSER comparison of Machu Pichu with no discernibly
similar regions

Figure 15: Original images of Machu Pichu

images prior to generating MSERs was the next attempt. A Gaus-
sian kernel of size 7x7 with sigma value 0.5 was initially used. On
the two images from Figure 15, blurring did not seem to improve
the results. Gradually larger values of sigma values were used, with
no success. Examples of the results from different sigma values can
be seen in Figure 16.

In this example, as the sigma value increased, the smaller MSERs
disappeared. However, the number of similar regions did not
change. This was true for most of the other landmarks. In con-
trast, blurring landmarks which initially had many similar regions
simply sharpened the already existing similar regions. An example
of this is demonstrated in 17.

Figure 17: MSER outputs without prior blurring (above) and with
prior blurring (below)

Changing the kernel size of the Gaussian blur did not seem to affect
the outputted MSERs. In the end, it was concluded that some other
preprocessing techniques should be applied prior to computing the
MSERs. Blurring alone is not enough to consistently isolate similar
regions between two images .



10 Summary and Conclusions

The results of the tests confirmed our original hypothesis. Four ma-
jor feature matchers, HARRIS, KLT, SIFT and SURF all performed
poorly when matching historical photos to modern photos. SIFT
and SURF were overall the most accurate. However, their success-
ful results can be attributed only to the matches involving modern
photos with other modern photos. As well, the feature matchers
were more successful only when matching photos with a small time
span.

An alternative approach to feature matching was proposed. The ex-
pectation was that this approach would solve the problems associ-
ated with matching historical photos. Using MSERs instead of cor-
ners or blobs initially seemed promising, but no concrete solution
was found. The hope is that the suggestion of using MSERs with
blurring can be used as a springboard for a larger, complete feature
matching solution. This solution would be able to accurately match
modern photos with each other, as well as with historical photos.

The overall contributions this project has made to the Computer
Vision field are as follows: A useful data set of images has been
collected and processed for feature matcher testing. The images for
each landmark contain a large range of dates, which can be used
to verify the accuracy of any future feature matching solutions. A
robust test script has been developed to easily compare the data set
and record test results for analysis. Finally, an initial attempt at a
more accurate feature matcher has been proposed and described,
with hopes that it will be developed further by a future party.
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Figure 3: Summary of landmarks used for testing



Figure 16: The effect of blurring on MSERs with different values for sigma


